Lab for Thin Films - Nanobiomaterials - Nanosystems - Nanometrology

inside2

"Ultra-high barrier films for r2r encapsulation of flexible electronics" (FLEXONICS)

STREP Project (2005 - 2008)
Coordination by LTFN
Project Coordinator : Prof. S. Logothetidis
www.flexonics.eu

Flexible electronic devices (FEDs) will have a major impact in our daily life if they will be encapsulated into transparent, ultra-high barrier, flexible materials, providing protection against oxygen and vapor, long-term stability and endurance. The realization of such materials, compatible with roll-to-roll (r2r) production processes will allow cost effective large scale FEDs production.
FLEXONICS is a STREP Project with the goal to develop:

  • materials systems consisting of alternating inorganic/organic layers few nm thick to improve the current barrier properties of flexible films by at least a factor of 1000,
  • the relative r2r processes, which will be used for the production of such materials,
  • optical & real-time techniques for process control and optimization, with final and specific goal the effective encapsulation of flexible OPV and OLED devices.

The above objectives conform to the NMP activity on "Materials processing by radically innovative technologies". The project will extend the knowledge on hybrid organic/inorganic systems, their interfaces and their optical and barrier properties. New techniques will be developed to measure and model the ultra-low gas permeation.
Finally, the optical properties of the hybrid organic/inorganic layers and the light interaction with complex-structured materials will be studied at the fundamental level.

Selected as one of 11 best EU-funded research projects at EuroNanoForum 2013! Nano Magazine Feb. 2014

nano magazine Feb2014 Page 1  nano magazine Feb2014 Page 2

olatronics

"Development and integration of processes & technologies for the production of Organic Low-cot & large-Area flexible Electronics (OLAtronics)"

STREP Project (2008 - 2011)
Coordination by LTFN
Project Coordinator : Prof. S. Logothetidis
www.olatronics.eu

The objectives of OLAtronics Project are the:

  1. Development and optimization of production processes for active and passive materials by establishing an effective combination of vacuum, wet and printing methods to provide materials with advanced properties, performance, stability and lifetime, low-cost and large-area processing,
  2. Effective encapsulation of the developed active and passive materials into components, and their large-scale fabrication onto flexible r2r substrates combined to real-time monitoring and control of materials process and quality by in-line optical techniques,
  3. Integration of the developed manufacturing technologies into a pilot-scale to allow the low-cost and large-area manufacturing of prototype device demonstrators, ultimately in large scale.

nax

"Nanomaterials with bioactive agents for cartilage regeneration cartilage and treatment of Osteoarthritis (NanoArthroChondros)"

SINERGASIES Project (2011)
Coordination by LTFN
Project Coordinator : Prof. S. Logothetidis
nanoarthrochondros.physics.auth.gr

The main idea of NanoArthroChondros is the development of a new strategic method/treatment for cartilage re-generation in the knee joint region with the generation of nanobiomimetic scaffolds, functionalised with bioactive molecules and stem cells in order to ensure the attraction and the proliferation of specific cells promoting in this way tissue regeneration but also the use of innovative techniques for the study of protein-cellular interactions at nanoscale resulting in the restriction of animal studies. NanoArthroChondros aims to be the foundation for the production of implants from biomaterials that regenerate tissue for various clinical applications in the field of Regenerative Medicine.

nanorganic

"Development of Nanostructured Organic & Inorganic Materials and Thin Films for the Production of Organic Electronic Devices (NanOrganic)"

SINERGASIES Project (2011)
Coordination of LTFN
Project Coordinator : Prof. S. Logothetidis
nanorganic.physics.auth.gr

The main idea of NanOrganic is the development of a complete technology of Organic Electronics that includes the development of improved organic semiconductors (polymers & small molecules), conductors, and nano-structured hybrid barrier materials with a combination of printing and vacuum processes, the development of organic electronic devices from these materials and the achievement of compatibility of the materials and processes with large scale and low cost production processes with the aim the direct application in industrial scale for the production of organic electronic devices onto polymer substrates. For the achievement of this idea, the NanOrganic will combine all the Greek excellence in this field.

yfatronic logo

"Development of Integrated Flexible Textile & Electronic Products (Yfatronic)"

SINERGASIES Project (2011)
Coordination of LTFN
Project Coordinator : Prof. S. Logothetidis
yfatronic.physics.auth.gr

The main idea of YFATRONIC is the technology development for the integration of flexible organic photovoltaic devices onto textile products (e.g. textiles for tents, clothing etc.) and the design of the appropriate electronic circuits which will support OPVs for the charging of external portable electronics devices. The know-how acquired from this project will be the base for the integration of other kind flexible electronic devices onto textile products, like sensors, displays, antennas, etc. For the achievement of the above goals YFATRONIC combines all the Greek excellence and know-how in this field.

rolemak

"REGPOT - Reinforce Organic Electronics Research Potential in Kentriki Makedonia (ROLEMAK)"

FP7-REGPOT-2011-1
Coordination by LTFN
Project Coordinator: Prof. S. Logothetidis
www.ltfn.gr/projects/rolemak

Concept of ROleMak: To advance the research potential of Labs from the Physics Department (PD) of Aristotle University of Thessaloniki (AUTh), Greece to conduct high level R&D in OEs, through:

  • Strategic Partnership & Collaborations with European research groups with excellence in OEs for Know-how exchange with the AUTh team.
  • Recruitment of Exceptional Scientists with internationally acknowledged expertise in OEs
  • Improvement of AUTh's Research Infrastructure, in order to act as a research entity of excellence in OEs.
  • Dissemination & Exploitation of the results through conferences, workshops, seminars, exhibitions, stakeholder meetings, round tables and other promotional and matchmaking activities.

The Objectives of ROleMak are to:

  • Reinforce the S&T potential – knowledge & competences of AUTh to OEs by transferring & exchanging know-how from scientists & technology managers of excellent European Universities, Research Centers and Companies,
  • Recruit experienced scientists with established expertise in OEs to work with the AUTh team,
  • Upgrade the research infrastructure and peripheral equipment of AUTh to become competitive in the field of OEs. This infrastructure will be used by the ROleMak collaborators even after the end of the project reassuring, that way, the establishment of a research entity with excellence in OEs,
  • Disseminate & Exploit the acquired results in OEs by organizing Conferences, Exhibitions, Round Tables and other promotional events and networking through EC projects.

nanohybrid logo

"Multifunctional NANOcoatings with HYBRID organic-inorganic interfaces"

SYNERGASIA 2011
Participation of LTFN
Project Coordinator: University of Ioannina
Duration: 29 months (2013)
AuTh Scientific Responsible: Prof. S. Logothetidis

The NANO-HYBRID project aims at developing a new generation of industrial products based on multifunctional nanostructured coatings, which incorporate hybrid organic-inorganic interfaces. Nanostructured coatings can be either nanocomposites or nanolaminates or a combination of them.
In particular, two industrial applications will be considered:

  1. Exceptional hardness, wear and corrosion resistance nanocoatings with an adherent, organic lubricant overlayer of controlled lubrication performance.
  2. Coloration of organic ophthalmic lenses by depositing an inorganic, plasmonic and hard/scratch resistant coating by physical vapor deposition.

grlight logo

"GR-Light - Green/k Sustainable Lighting"

SYNERGASIA 2011
Participation of LTFN
Project Coordinator: University of Patras
Duration: 21 months (2013)
AuThScientific Responsible: Ass. Prof. M. Gioti
gr-light.physics.auth.gr

The main idea of GR-Light is to develop the r2r manufacturing technology and the flexible OLED devices for the production of sustainable & eco-friendly lighting systems. To attain the r2r compatibility and lifetime extension all the materials and device structures will be suitable for printing and will be encapsulated with high barrier materials to protect them from atmospheric gasses.
The target is to effectively combine novel materials into high-throughput r2r printing and patterning methods, like inkjet printing and laser patterning. A r2r pilot system will be developed with the aim to fabricate flexible OLEDs. It will implement three important processes: multilayer deposition, patterning and packaging which will be evaluated and optimized to fabricate flexible OLEDs. The flexible OLED devices will be encapsulated and integrated with other electronic components (battery and OPV), towards energy saving–autonomous lighting systems. The proof of concept of the prototype r2r machine will be demonstrated through the fabrication of two specific prototypes such as interior-attractive autonomous lighting and smart clothing.

gladiator logo

"GLADIATOR - Graphene Layers: Production, Characterization and Integration"

FP7 grant agreement number 60400
Participation of LTFN
Project Coordinator: Fraunhofer COMEDD Leader
Duration: 42 months (2013)
www.graphene-gladiator.eu

GLADIATOR seeks to improve the quality and size of CVD graphene sheets, and to reduce their production costs, in order to make the use of graphene more attractive e.g. in applications such as transparent electrodes for large area organic electronics.
The project will achieve this by optimizing the performance of CVD graphene (using doping) increasing the throughput and size of CVD batch reactors improving the process by which graphene is transferred from the CVD catalysts to the application substrate.

basmati logo

"BASMATI - Bringing Innovation by Scaling up nanomaterials and inks for printing"

H2020 - NMP - PILOTS 2014
Participation of LTFN
Project Coordinator: UMICORE, Belgium
Duration: 36 months (2015)
www.ltfn.gr/projects/basmati

The BASMATI project will address the development of active nanomaterial and electrochemical inks for printing technologies such as screen and inkjet printing. The ink formulations will be tested on a case study through printing of a thin film battery. The general objective of the project is to scale-up the ink formulations to pilot line ensuring large volume fabrication of new products with improved properties for printing application.
The consortium consists of 10 partners from 6 different European Countries.

nanocardio

"Nanomedicine for Advanced, Bio-active / -mimetic Materials for Cardiovascular Implants"

Post-Doc Project
(2012-2015)
Coordination by LTFN
Project Coordinator : Dr. Karagkiozaki Varvara MSc, Cardiologist

NanoCardio targets to manufacture advanced Nanocomposites and Bioinspired Materials with controlled surface properties for Cardiovascular Implants, to address the drawbacks of the currently used Stents.
It will give access to innovative Drug Eluting platform based on Nanocarriers for controllable drug release from medical implants.

Design and development of Biomimetic Nano-composites made of:

  1. Bioactive, nanoporous coatings for multifunctional activities- as drug reservoirs and to steer ECs adhesion and proliferation
  2. Therapeutic Nanoparticles

These advanced nanostructures will be Thrombo-protective and Endothelial Selective for Stent Applications, in order to accelerate Endothelialization and to overcome the complications of the late Stent Thrombosis and in-stent Restenosis of drug eluting stents.

grelect

"Development of graphene-based advanced hybrid electrodes to im-prove the performance of organic electronic devices"

Bilateral R&D Cooperation between Greece and Germany - SINERGASIES Project 2013-2015
Coordination by LTFN
Project Coordinator: Prof. S. Logothetidis
http://grelect.physics.auth.gr

During the GRΕlect project, HZB (Germany) and AUTh (Greece) will investigate the implementation of graphene mono- and multi-layers at the hybrid interface between inorganic electrodes and organic layers in small molecules and polymer based OE devices, such as Organic Solar Cells (OSC) and Organic Thin Film Transistors (OTFTs).

The GRElect objectives are:

  1. to develop electrodes with buffer layers based on graphene that will be applied as partial or complete substitute for conventional transparent electrodes such as Indium Tin Oxide,
  2. to optimize the graphene -based electrodes functionality by p- and n- doping in order to form a charge selective transparent contact. The kind of chemical conditioning and graphene doping will be based on the application of the graphene electrode as cathode or anode depending on the specific device architecture (inverted or not).
  3. to investigate the optical, electrical, properties of the graphene-based electrodes and its effect on the growth of the adjacent organic layer by state-of-the-art analytical techniques
  4. to fabricate different OE devices with graphene-based electrodes, such as OSC and OTFTs.

plasmonharvest

Plasmonic architectures for solar energy Harvesting (Plasmon-harvest)

ARISTEIA II Project No 3049
Coordination by LTFN
Project Coordinator: Prof. S. Logothetidis
plasmon-harvest.physics.auth.gr

Organic Photovoltaics (OPVs) have the potential to become a promising technology towards the harvesting of solar energy.One of the major advantages that this technology offers is the ability to fabricate devices out of solutions of the active materials employing cheap, scalable printing techniques with low environmental impact.
However, in order to realize mass products, the current improvement in efficiency and stability over lifetime must continue until the €/W allows for OPVs to become a low-cost alternative to conventional inorganic solar cells. Plasmon-Harvest Project will develop a universal methodology for the development of noble metalNP that will boost the efficiency of organic photovoltaics (OPV)devices for better performances. These nanostructures will be developed with processes that are compatible with today's industry needs for scalable techniques.
Noble metals (Au & Ag),that support surface plasmon resonances, for the absorption enhancement in organic absorbers in OPV.

The main objectives of Plasmon-Harvest are the:

  1. Development and optimization of NP for solar energy (plasmonic NP)applications,
  2. Development of a universal methodology for plasmonic nanocomposite thin films and design architectures that will lead to novel OPV devices,
  3. Fabrication of OPV devices with enhanced efficiency and performance and
  4. Investigation of fundamental phenomena& mechanisms to tailor NP, nanocomposite and device response.

nanoreg logo

H2020 - NMP 646221
Participation of LTFN
Project Coordinator: Ineris, France
Duration: 36 months
www.nanoreg2.eu

NanoReg2 will establish safe by design as a fundamental pillar in the validation of a novel manufactured material.

The NanoReg2 project, built around the challenge of coupling SbD to the regulatory process, will demonstrate and establish new principles and ideas based on data from value chain implementation studies to establish SbD as a fundamental pillar in the validation of a novel MNM. It is widely recognized by industries as well as by regulatory agencies that grouping strategies for NM are urgently needed. ECETOC has formed a task force on NM grouping and also within the OECD WPMN a group works on NM categorisation. However, so far no reliable and regulatory accepted grouping concepts could be established. Grouping concepts developed by NanoReg2 can be regarded as a major innovation therefore as guidance documents on NM grouping will not only support industries or regulatory agencies but would also strongly support commercial launch of a new NM.

smartonics logo

"Development of smart machines, tools and processes for the precision synthesis of nanomaterials with tailored properties for Organic Electronics"

NMP.2012.1.4-1 Pilot lines for precision synthesis of nanomaterials
Coordination by LTFN
Project Coordinator: Prof. S. Logothetidis
www.ltfn.gr/projects/smartonics

The target of the Smartonics project is the development of Pilot lines that will combine smart technologies with smart nanomaterials for the precision synthesis of Organic Electronic (OE) devices.
The Smartonics objectives are:

  1. Development of smart Nanomaterials for OEs (polymer & small molecule films, plasmonic NPs and super-barriers) by process and computational modeling optimization
  2. Development of smart Technologies (r2r printing and OVPD machines combined with precision sensing & laser tools and processes)
  3. Integration of Nanomaterials & Technologies in Pilot lines for precision synthesis of Nanomaterials & OE devices, optimization, demonstration and evaluation for Industrial applications.

Page 2 of 2

Contact us

If you want more information, fill in this form. We will get back to you soon.

At LTFN we consider the privacy of our visitors to be extremely important. This privacy policy document describes in detail the types of personal information is collected and recorded by LTFN and how we use it.

If you require any more information or have any questions about our privacy policy, please feel free to contact us by email.
This website is operated by LTFN web administration group, which belongs to the Nanotechnology Lab LTFN, in Aristotle University of Thessaloniki-Greece.
When we say ‘we’, ‘us’ or ‘LTFN’ it is because that is who we are and we own and run the website.

Collection and retention of your personal information
We collect information from you when you contact us via form, as appropriate. You do not have to give us any personal information in order to use the website. However, if you wish to take advantage of some personalized services we offer, you will need to provide us with certain information about yourself. For example if you wish to contact us or send us a request, we will collect some or all of the following personal data from you: name, email, affiliation you belong/work etc.
We require this information to understand your needs and provide you with a better service, and in particular for the following reasons: internal record keeping, to improve our services, send promotional emails about news for LTFN’s activities or to manage your contact request.
All the data is stored in the hosting service’s infrastructure and can be accessed by LTFN’s administration group or the hosting service’s administration.

Security
We are committed to ensuring that your information is secure. In order to prevent unauthorized access or disclosure, we have put in place suitable physical, electronic and managerial procedures to safeguard and secure the information we collect online.

Link to other websites
Our website may link to external sites that are not operated by us. Please be aware that we have no control over the content and practices of these sites, and cannot accept responsibility or liability for their respective privacy policies.

Log Files
Like many other Web sites, http://www.ltfn.gr/ makes use of log files. These files merely logs visitors to the site - usually a standard procedure for hosting companies and a part of hosting services’ analytics. The information inside the log files includes internet protocol (IP) addresses, browser type, Internet Service Provider (ISP), date/time stamp, referring/exit pages, and possibly the number of clicks. This information is used to analyze trends, administer the site, track user's movement around the site, and gather demographic information. IP addresses, and other such information are not linked to any information that is personally identifiable.

Cookies
A cookie is a small file which asks permission to be placed on your computer's hard drive. Once you agree, the file is added and the cookie helps analyze web traffic or lets you know when you visit a particular site. Cookies allow web applications to respond to you as an individual. The web application can tailor its operations to your needs, likes and dislikes by gathering and remembering information about your preferences.
We use traffic log cookies to identify which pages are being used. This helps us analyze data about web page traffic and improve our website in order to tailor it to customer needs. We only use this information for statistical analysis purposes and then the data is removed from the system.
Overall, cookies help us provide you with a better website, by enabling us to monitor which pages you find useful and which you do not. A cookie in no way gives us access to your computer or any information about you, other than the data you choose to share with us.
You can choose to accept or decline cookies. Most web browsers automatically accept cookies, but you can usually modify your browser setting to decline cookies if you prefer. This may prevent you from taking full advantage of the website.

Children's Information
We believe it is important to provide added protection for children online. We encourage parents and guardians to spend time online with their children to observe, participate in and/or monitor and guide their online activity. LTFN does not knowingly collect any personally identifiable information from children under the age of 16. If a parent or guardian believes that LTFN has in its database the personally-identifiable information of a child under the age of 16, please contact us immediately (using the contact in the first paragraph) and we will use our best efforts to promptly remove such information from our records.

Controlling your personal information
You are free to refuse our request for your personal information, with the understanding that we may be unable to provide you with some of your desired services.
We will not sell, distribute or lease your personal information to third parties unless we have your permission or are required by law to do so. We may use your personal information to send you promotional information about third parties which we think you may find interesting if you tell us that you wish this to happen.
You may request details of personal information which we hold about you. If you would like a copy of the information held on you please email us.
If you believe that any information we are holding on you is incorrect or incomplete, please write to or email us as soon as possible, at the above address. We will promptly correct any information found to be incorrect.
You also have the right to ask us to delete the personal information we hold for you.

Online Privacy Policy Only
This privacy policy applies only to our online activities and is valid for visitors to our website and regarding information shared and/or collected there. This policy does not apply to any information collected offline or via channels other than this website.

Consent
By using our website, you hereby consent to our privacy policy and agree to its terms. If you have any questions about how we handle user data and personal information, feel free to contact us.

Update
This Privacy Policy was last updated on: Tuesday, May 22nd, 2018.
Should we update, amend or make any changes to our privacy policy, those changes will be posted here.